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Lag times and parameter mismatches in synchronization of unidirectionally coupled chaotic
external cavity semiconductor lasers
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We report an analysis of synchronization between two unidirectionally coupled chaotic external cavity
master and slave semiconductor lasers with two characteristic delay times, where the delay time in the coupling
is different from the delay time in the coupled systems themselves. We demonstrate that parameter mismatches
in photon decay rates for the master and slave lasers can explain the experimental observation that the lag time
is equal to the coupling delay time.
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There are different types of synchronization in interactinglag time is of considerable practical importance, as the re-
chaotic systems. Complete, generalized, phase, lag, and agevery of message at the receiver critically depends on the
ticipating synchronizations of chaotic oscillators have beergorrection made for the lag tinfé,12]. _
described theoretically and observed experimentally. Com- Recently, there have been several attempts to explain the
plete synchronization implies coincidence of states of interC0UPling-delay lag time synchronization in unidirectionally

acting systemsy(t)=x(t) [1]. A generalized synchroniza- coupled external cavity semiconductor lasers. In R&8]
S : . . this phenomenon was related to a strong coupling and/or
tion, introduced for drive-response systems, is defined as t

. . equency detuning between the two lasers. However in a
presence of some functional relation between the states %cent papef14], where anumericalstudy of two unidirec-
response and drive, i.ey(t) =F (x(t)) [2]. Phase synchroni- tionally coupled single-mode semiconductor lasers subject to
zation means entrainment of phases of chaotic oscillatorgptical feedback is reported, it was shown that such a phe-
n®,—md,=const ( andmare integers whereas theiram- nomenon can be observed without any frequency detuning
plitudes remain chaotic and uncorrelaféd Lag synchroni-  between the two lasers. In Réfl4] it was found that two
zation appears as a coincidence of shifted-in-time states dfindamentally different types of chaotic synchronization can
two systemsy(t)=x.(t)=x(t— 7) with positive r and has occur_dependlng on the relation between the strer_wgths of the
been studied in between symmetrically coupled nonidentica‘FOUp:]'ng and of thehfeedEacfk o:‘jghe ll(asers. Infthr:a first type of
oscillators[4]. Anticipating synchronizatiof5] also appears chréggz\zlgycig’s:r/se:ret :qfael tﬁg I;gt?i?ng its eeéruagstrg't:ﬁé
asa comc.|den.ce of sh|fted-!n-t|me states Of. t\.NO coupled S_yséoupling delay between the transmitter and receiver lasers; in
tems, but in this case the driven system anticipates the driv

: ArVefhe second type of synchronization, when the feedback rate
y(t)=x(t+7) orx=y,, 7>0. An experimental observation of the transmitter is equal to the sum of the feedback rate of
of anticipating synchronization has been reported recentlyhe receiver and coupling strength, the lag time is the differ-
[6]. ence between the coupling delay and the round-trip time of
Chaos synchronization is of fundamental importance in ahe light in the transmitter. In numerical investigations of the
variety of complex physical, chemical, and biological sys-first type of synchronization reported in RE8] it was found
tems [7]. Because of their ability to generate high- that the synchronization error does not decay to zero but
dimensional chaos, time-delayed systdi@sare good can- rather shows small oscillations even when the authors con-
didates for secure communications based on chaosider modified synchronization manifolds for the electric
synchronization. In this context particular emphasis is giverfield amplitude and the carrier density by the introduction of
to the use of chaotic external cavity semiconductor lasersd constant correction coefficient. Thus as the authors of Ref.
because laser systems with optical feedback are prominet 4] themselves acknowledge, the synchronization manifold

representatives of time-delayed systems that can generate Hjtroduced there is not perfect, but is approximate in nature.
perchaog9]. In this paper we demonstrate that parameter mismatches

Most experimental investigations of chaos synchroniza-In photon decay rates for the master and slave lasers can

tion in unidirectionally coupled external cavity semiconduc—explaln perfectsynchronization with the lag time between

tor laserd 9] have found that the lag time between the master%ir;ﬁesynchronlzed states that is equal to the coupling-delay

and slave lasers’ intensities is equal to the coupling delay, A iate f K f . h luti ¢
whereas early numerical and analytical res{d8,11] show h appropriate framework for treating the evolution o
' the electric field of external cavity laser diodes is provided

that the lag time should be equal to the difference betwee : » i i :
the delay time in the coupling and round-trip time of the light By the widely utilized Lang-Kobayashi equatiofi],

in the transmitter’s external cavity. Knowledge of the exact dE;, (L+1ays) [ GyodNyo—Noson
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W —31,2_ 7e1,e2N1,2_ > |E1,2| ) = —v1|E1,
1+s;4E1 4 dt 2 1+5|Ey |2 2
where E; , are the slowly varying complex fields for the +KiE1 s 18X~ 10Ty).

master and slave lasers, respectivély; are the carrier den-

sities; y, , are the cavity lossesy; , are the linewidth en-  Assuming that the laser parameters are identieatept for
hancement factorsi; , are the optical gainsk; , are the photon decay rates and feedback ratese find that under
feedback levelsks is the coupling ratew is the optical the conditions

frequency without feedbadko frequency detuning between

the two lasers 7, is the round-trip time in the external cav- k=K 3
ity; 7, is the time of flight between the master laser and the

slave laser coupling-delay tim@; , are the injectiopump @

currents;ye’fe2 are the carrier lifetimess, , are the gain (1+10) (1+1a)

saturation coefficients. The term containkgexists only for vi= Yo—Ksexp —1wTy), (4)
the slave laser, and accounts for the light injected from the 2 2

master laser to the slave laser. .

Now we shall demonstrate that depending on the Iase?Whe_rea_al_aZ) the equann:s fo,El'T2 anq Ez becgme
systems’ parameters, Eqd) can allow for two regimes of identical and_ the Iag synchrc_)nlzapon manifalg) exists.
lag synchronization between the lasers’ intensitielsich are ~ One can easily rewrite conditio@) in the more appealing
related to the electric field amplitudes by |E|?). form

First we explore the possibility of perfect synchronization )
between the chaotic intensities of the master and slave lasers (yo— 71)2= 4Ks )
with the lag time equal to the coupling-delay time—as is Y2m 7 1+ a?
found in most experimental cases,

Thus in this paper we demonstrate analytically that by taking
Py 2 into account differences in the photon lifetimes for the mas-
ter and slave lasers one can obtain perfect synchronization.
We also assume an analogous synchronization manifold fddumerical simulations fully support the analytical approach.
the carrier densitiesN; , =N,. As was numerically shown We perform simulations of Eqsl) by employing a Runge-
in Ref. [14] such a synchronization manifolewith some Kutta-Fehlberg algorithmp17] for the following parameters:
modification$ can exist ifk;=k,. However as mentioned ®1=@®2=3, $1=5=0, Np=Np=1.7X 10°, G1:912
above, the modified synchronization manifold studied in Ref.~ 2-14% 10, m=10ns, 7,= 157’13' Ye1= 7’e2:711 ns -,
[14] was not perfect even after introducing a constant scalin&WC/"):63% n”} ki=k,=10ns %, k3=30 ns=, 7
factor a=1.016 for the electric field amplitudes. In our no- = V3:6X10'°s™%, y,=2y,, the pump currents in units of
tation the synchronization manifold considered in Ré#] the electron charge exceed the 'Fhreshold valqg of the solitary
would have been written aaz|l‘72:|2_ We also note the laseryeNg; by factor 1.02. Notice that condition8) and

. . ... (5) are satisfied. Figure 1 shows the time series of (the
following further difference between the s nchronlzatlon( . L "
manifolgs considered in this work and thoseyin pajdet]: amplitude of the electric fieltlE; ,=A; £xp(®y7)] injected

o into the receiverA;(t—75,); (2) amplitude of the electric
namely, above we assume the synchronization manNgld . 1 2/ o
=N, Y the analogous synchroniz);tion manifold in F{&% field produced by the receivek,(t); (3) synchronization
iTo!

_ B . errorAA=|A,(t— 7,) — A,(t)|. Perfect synchronization with
is of the form N2=Ny,+ Ay, whereAy is some constant. o coupling-delay lag time is evident.

We would like to emphasize that even after such modifica- The necessary conditions for perfect synchronizaf®n
tions of the synchronizations manifolds made in R&#],  and (5) do not provide information on the stability of the
synchronization was not perfect. The authors of R&#]  synchronization manifold2). Unfortunately it is practically
with reference to MirassgRef. [13] in Ref. [14]) indicate  very difficult to study analytically the stability of the syn-
that perfect synchronization is possible if different photonchronized solution. For that purpose one can use numerical
lifetimes are assumed for the master and slave lasers. A simsimulations.
lar idea for achieving perfect synchronization between mas- Figure 2 shows numerical simulations of E¢) for the
ter and slave lasers with coupling-delay lag time is indicatedeedback ratek; =k,=25 ns ! the other parameters are as
in our recent worK 16]. in Fig. 1. One can notice that synchronized soluti@n is

In this paper we show that perfect synchronization can bgnstable. We have found that a perfect synchronized solution
achieved without the above mentioned modifications of thgor k,=k,=25 ns* can be made stable ik; exceeds
synchronization manifolds. Following RéfL6], suppose that 55 ng'?, e.g. ks=60 ns 't for y;=1.2x1/\/10x 101 s,
there are parameter mismatches betwc_een the master aggzzyll The general tendency is that with increasing feed-
slave laser photon decay rateg;# y,. Using Egs.(1) we  pack ratek; the coupling ratek; should be increased to
write the dynamical equation for thg, in the following  maintain stability of the synchronized solution. We also no-
manner: tice that condition$3) and(5) coincide with those derived in

|
1,7
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FIG. 1. Perfect lag synchronization with the coupling delay lag
time: (a) the time series of the amplitude of the electric field in-
jected into the receivek,(t— 7,); (b) amplitude of the electric field

t(ns)

t(ns)

FIG. 2. Instability of the synchronized solutiofa) the time
series of the amplitude of the electric field injected into the receiver

A;(t—7,); (b) amplitude of the electric field produced by the re-

produced by the receiveA,(t); (c) synchronization errorAA ceiverAy(t): (c) synchronization erroA A= |A,(t—7,) — Ag(t)].

=[A(t— 1) = Ax(t)].

Ref.[18] from the Lang-Kobayashi equations written for the nization condition. As noted in Ref19], since the coupling
intensity and the phase of the laser. between the laser systems is unidirectional, one can set the
In real systems the condition for perfect synchronizationcoupling-delay time to zero which is justified by experiments
cannot be fully satisfied. In consequence, it is of immens¢19] demonstrating that the observed synchronization phe-
practical importance to consider the possibility of synchroni-nomena are independent ef. In particular, all the results
zation in the presence of deviation from the perfect synchrowould hold forr,=0, i.e., for complete synchronization. As
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shown in the study of complete synchronization in Refs.parameter mismatches in photon decay rates for the master
[18,20, if the lasers are subject to the same feedback levednd slave lasers can explain the experimental observation
and photon decay rates differ such thgt=y,+ 6 with §  that the lag time is equal to the coupling delay time and
being an arbitrary type of synchronized solutiorns derived relevant existence conditions. The concept of lag
=bl,, ,N,=N;, +Ay, whereb and Ay are some con- Synchronization was introduced by Rosenbletral. [4] un-

2 2 (ij]er certain approximations in studying synchronization be-

stants, can be obtained. Such a functional relation betweet eenbidirectionally coupled systems described by ordinary
the states .Of the master .and. slave laser systems CorreSpor}ﬁlﬁerential equationgno intrinsic delay termswith param-
to generalized synchronization of the coupled syst¢®is

. L eter mismatchegfor recent progress in the investigation of
Thus in the presence of a deviation from the expetrfec) lag synchronization, see also RE21]). As such, lag syn-

synchronizatio_n_con_ditions, generalized synchronization bec':hronization cannot be observed if two oscillators are com-
tween the unldlrecthnally goupled master and slave Iase[5Ietely identical[22]. In this paper we have demonstrated
systems can be obtained with a lag time Fln'ally We un- that the presence of parameter mismatches is also essential
derline that in the absence of parameter mismatches Wheg e eyistence operfectretarded synchronization with the
the feedback rate of the transmitter is equal to the sum of th@oupling-delay lag time between certain classesriiirec-
feedback rate of the receiver and coupling strerigth ko  ionally coupled time-delayed systems. To be more specific,
+ks, the lag time is the difference between the couplingto, the example of external cavity laser diodes we have
delay timer, and the round-trip time of the light in the gpown that for unidirectionally coupled time-delayed sys-
transmitterry, in full accordance with Refg10,11,14,1§ temsperfectretarded synchronization occurs both with and
To summarize, we have studied synchronization betweefithoyt parameter mismatches: parameter mismatches can
unidirectionally coupled chaotic external cavity semmonduc-change the lag time between the synchronized systems.
tor lasers with two characteristic delay times, where the de-

lay time in the coupling is different from the delay time in  This work, was supported by the U.K. EPSRC under
the coupled systems themselves. We have demonstrated tt@tant Nos. GR/R22568/01 and GR/N63093/01.
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