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Lag times and parameter mismatches in synchronization of unidirectionally coupled chaotic
external cavity semiconductor lasers
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We report an analysis of synchronization between two unidirectionally coupled chaotic external cavity
master and slave semiconductor lasers with two characteristic delay times, where the delay time in the coupling
is different from the delay time in the coupled systems themselves. We demonstrate that parameter mismatches
in photon decay rates for the master and slave lasers can explain the experimental observation that the lag time
is equal to the coupling delay time.
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There are different types of synchronization in interact
chaotic systems. Complete, generalized, phase, lag, and
ticipating synchronizations of chaotic oscillators have be
described theoretically and observed experimentally. Co
plete synchronization implies coincidence of states of in
acting systems,y(t)5x(t) @1#. A generalized synchroniza
tion, introduced for drive-response systems, is defined as
presence of some functional relation between the state
response and drive, i.e.,y(t)5F„x(t)… @2#. Phase synchroni
zation means entrainment of phases of chaotic oscillat
nFx2mFy5const (n andm are integers!, whereas their am-
plitudes remain chaotic and uncorrelated@3#. Lag synchroni-
zation appears as a coincidence of shifted-in-time state
two systems,y(t)5xt(t)[x(t2t) with positive t and has
been studied in between symmetrically coupled nonident
oscillators@4#. Anticipating synchronization@5# also appears
as a coincidence of shifted-in-time states of two coupled s
tems, but in this case the driven system anticipates the dr
y(t)5x(t1t) or x5yt , t.0. An experimental observatio
of anticipating synchronization has been reported rece
@6#.

Chaos synchronization is of fundamental importance i
variety of complex physical, chemical, and biological sy
tems @7#. Because of their ability to generate hig
dimensional chaos, time-delayed systems@8# are good can-
didates for secure communications based on ch
synchronization. In this context particular emphasis is giv
to the use of chaotic external cavity semiconductor las
because laser systems with optical feedback are promi
representatives of time-delayed systems that can generat
perchaos@9#.

Most experimental investigations of chaos synchroni
tion in unidirectionally coupled external cavity semicondu
tor lasers@9# have found that the lag time between the mas
and slave lasers’ intensities is equal to the coupling de
whereas early numerical and analytical results@10,11# show
that the lag time should be equal to the difference betw
the delay time in the coupling and round-trip time of the lig
in the transmitter’s external cavity. Knowledge of the exa
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lag time is of considerable practical importance, as the
covery of message at the receiver critically depends on
correction made for the lag time@4,12#.

Recently, there have been several attempts to explain
coupling-delay lag time synchronization in unidirectiona
coupled external cavity semiconductor lasers. In Ref.@13#
this phenomenon was related to a strong coupling an
frequency detuning between the two lasers. However i
recent paper@14#, where anumericalstudy of two unidirec-
tionally coupled single-mode semiconductor lasers subjec
optical feedback is reported, it was shown that such a p
nomenon can be observed without any frequency detun
between the two lasers. In Ref.@14# it was found that two
fundamentally different types of chaotic synchronization c
occur depending on the relation between the strengths of
coupling and of the feedback of the lasers. In the first type
synchronization, when the feedback rates of the transm
and receiver lasers are equal, the lag time is equal to
coupling delay between the transmitter and receiver laser
the second type of synchronization, when the feedback
of the transmitter is equal to the sum of the feedback rate
the receiver and coupling strength, the lag time is the diff
ence between the coupling delay and the round-trip time
the light in the transmitter. In numerical investigations of t
first type of synchronization reported in Ref.@8# it was found
that the synchronization error does not decay to zero
rather shows small oscillations even when the authors c
sider modified synchronization manifolds for the elect
field amplitude and the carrier density by the introduction
a constant correction coefficient. Thus as the authors of R
@14# themselves acknowledge, the synchronization manif
introduced there is not perfect, but is approximate in natu

In this paper we demonstrate that parameter mismatc
in photon decay rates for the master and slave lasers
explain perfect synchronization with the lag time betwee
the synchronized states that is equal to the coupling-de
time.

An appropriate framework for treating the evolution
the electric field of external cavity laser diodes is provid
by the widely utilized Lang-Kobayashi equations@15#,

dE1,2

dt
5

~11ıa1,2!

2 S G1,2~N1,22N01,02!

11s1,2uE1,2u2
2g1,2D E1,2~ t !

1k1,2E1,2~ t2t1!exp~2ıvt1!1k3E1~ t2t2!

3exp~2ıvt2!, ~1!
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dN1,2

dt
5J1,22ge1,e2N1,22

G1,2~N1,22N01,02!

11s1,2uE1,2u2
uE1,2u2,

where E1,2 are the slowly varying complex fields for th
master and slave lasers, respectively;N1,2 are the carrier den
sities; g1,2 are the cavity losses;a1,2 are the linewidth en-
hancement factors;G1,2 are the optical gains;k1,2 are the
feedback levels;k3 is the coupling rate;v is the optical
frequency without feedback~no frequency detuning betwee
the two lasers!; t1 is the round-trip time in the external cav
ity; t2 is the time of flight between the master laser and
slave laser coupling-delay time;J1,2 are the injection~pump!
currents;ge1,e2

21 are the carrier lifetimes;s1,2 are the gain
saturation coefficients. The term containingk3 exists only for
the slave laser, and accounts for the light injected from
master laser to the slave laser.

Now we shall demonstrate that depending on the la
systems’ parameters, Eqs.~1! can allow for two regimes of
lag synchronization between the lasers’ intensities~which are
related to the electric field amplitudes byI}uEu2).

First we explore the possibility of perfect synchronizati
between the chaotic intensities of the master and slave la
with the lag time equal to the coupling-delay time—as
found in most experimental cases,

I 1,t2
5I 2 . ~2!

We also assume an analogous synchronization manifold
the carrier densities:N1,t2

5N2. As was numerically shown
in Ref. @14# such a synchronization manifold~with some
modifications! can exist if k15k2. However as mentioned
above, the modified synchronization manifold studied in R
@14# was not perfect even after introducing a constant sca
factor a51.016 for the electric field amplitudes. In our n
tation the synchronization manifold considered in Ref.@14#
would have been written asa2I 1,t2

5I 2. We also note the
following further difference between the synchronizati
manifolds considered in this work and those in paper@14#:
namely, above we assume the synchronization manifoldN2
5N1,t2

, the analogous synchronization manifold in Ref.@14#

is of the formN25N1,t2
1DN , whereDN is some constant

We would like to emphasize that even after such modifi
tions of the synchronizations manifolds made in Ref.@14#,
synchronization was not perfect. The authors of Ref.@14#
with reference to Mirasso~Ref. @13# in Ref. @14#! indicate
that perfect synchronization is possible if different phot
lifetimes are assumed for the master and slave lasers. A s
lar idea for achieving perfect synchronization between m
ter and slave lasers with coupling-delay lag time is indica
in our recent work@16#.

In this paper we show that perfect synchronization can
achieved without the above mentioned modifications of
synchronization manifolds. Following Ref.@16#, suppose that
there are parameter mismatches between the master
slave laser photon decay rates:g1Þg2. Using Eqs.~1! we
write the dynamical equation for theEt2

in the following
manner:
03720
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dE1,t2

dt
5

~11ıa1!

2 S G1~N1,t2
2N01!

11s1uE1,t2
u2

2g1D E1,t2

1k1E1,t11t2
exp~2ıvt1!.

Assuming that the laser parameters are identical~except for
photon decay rates and feedback rates!, we find that under
the conditions

k15k2 ~3!

and

~11ıa!

2
g15

~11ıa!

2
g22k3exp~2ıvt2!, ~4!

~wherea5a15a2) the equations forE1,t2
andE2 become

identical and the lag synchronization manifold~2! exists.
One can easily rewrite condition~4! in the more appealing
form

~g22g1!25
4k3

2

11a2
. ~5!

Thus in this paper we demonstrate analytically that by tak
into account differences in the photon lifetimes for the m
ter and slave lasers one can obtain perfect synchroniza
Numerical simulations fully support the analytical approac
We perform simulations of Eqs.~1! by employing a Runge-
Kutta-Fehlberg algorithm@17# for the following parameters
a15a253, s15s250, N015N0251.73108, G15G2
52.143104, t1510 ns, t2515 ns, ge15ge251 ns21,
2pc/v5635 nm, k15k2510 ns21, k3530 ns21, g1

5A3.631010 s21, g252g1, the pump currents in units o
the electron charge exceed the threshold value of the sol
laserge1N01 by factor 1.02. Notice that conditions~3! and
~5! are satisfied. Figure 1 shows the time series of the~1!
amplitude of the electric field@E1,25A1,2exp(ıF1,2)# injected
into the receiverA1(t2t2); ~2! amplitude of the electric
field produced by the receiverA2(t); ~3! synchronization
errorDA5uA1(t2t2)2A2(t)u. Perfect synchronization with
the coupling-delay lag time is evident.

The necessary conditions for perfect synchronization~3!
and ~5! do not provide information on the stability of th
synchronization manifold~2!. Unfortunately it is practically
very difficult to study analytically the stability of the syn
chronized solution. For that purpose one can use nume
simulations.

Figure 2 shows numerical simulations of Eqs.~1! for the
feedback ratesk15k2525 ns21 the other parameters are a
in Fig. 1. One can notice that synchronized solution~2! is
unstable. We have found that a perfect synchronized solu
for k15k2525 ns21 can be made stable ifk3 exceeds
55 ns21, e.g.,k3560 ns21 for g151.231/A1031011 s21,
g252g1. The general tendency is that with increasing fee
back ratek1 the coupling ratek3 should be increased to
maintain stability of the synchronized solution. We also n
tice that conditions~3! and~5! coincide with those derived in
2-2
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Ref. @18# from the Lang-Kobayashi equations written for th
intensity and the phase of the laser.

In real systems the condition for perfect synchronizat
cannot be fully satisfied. In consequence, it is of imme
practical importance to consider the possibility of synchro
zation in the presence of deviation from the perfect synch

FIG. 1. Perfect lag synchronization with the coupling delay
time: ~a! the time series of the amplitude of the electric field i
jected into the receiverA1(t2t2); ~b! amplitude of the electric field
produced by the receiverA2(t); ~c! synchronization errorDA
5uA1(t2t2)2A2(t)u.
03720
n
e
-
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nization condition. As noted in Ref.@19#, since the coupling
between the laser systems is unidirectional, one can se
coupling-delay time to zero which is justified by experimen
@19# demonstrating that the observed synchronization p
nomena are independent oft2. In particular, all the results
would hold fort250, i.e., for complete synchronization. A

FIG. 2. Instability of the synchronized solution:~a! the time
series of the amplitude of the electric field injected into the recei
A1(t2t2); ~b! amplitude of the electric field produced by the r
ceiverA2(t); ~c! synchronization errorDA5uA1(t2t2)2A2(t)u.
2-3
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shown in the study of complete synchronization in Re
@18,20#, if the lasers are subject to the same feedback le
and photon decay rates differ such thatg25g11d with d
being an arbitrary type of synchronized solutionsI 2
5bI1,t2

,N25N1,t2
1DN , where b and DN are some con-

stants, can be obtained. Such a functional relation betw
the states of the master and slave laser systems corresp
to generalized synchronization of the coupled systems@2#.
Thus in the presence of a deviation from the exact~perfect!
synchronization conditions, generalized synchronization
tween the unidirectionally coupled master and slave la
systems can be obtained with a lag timet2. Finally we un-
derline that in the absence of parameter mismatches w
the feedback rate of the transmitter is equal to the sum of
feedback rate of the receiver and coupling strengthk15k2
1k3, the lag time is the difference between the coupli
delay time t2 and the round-trip time of the light in th
transmittert1, in full accordance with Refs.@10,11,14,18#.

To summarize, we have studied synchronization betw
unidirectionally coupled chaotic external cavity semicond
tor lasers with two characteristic delay times, where the
lay time in the coupling is different from the delay time
the coupled systems themselves. We have demonstrated
r-
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parameter mismatches in photon decay rates for the ma
and slave lasers can explain the experimental observa
that the lag time is equal to the coupling delay time a
derived relevant existence conditions. The concept of
synchronization was introduced by Rosenblumet al. @4# un-
der certain approximations in studying synchronization
tweenbidirectionallycoupled systems described by ordina
differential equations~no intrinsic delay terms! with param-
eter mismatches~for recent progress in the investigation
lag synchronization, see also Ref.@21#!. As such, lag syn-
chronization cannot be observed if two oscillators are co
pletely identical@22#. In this paper we have demonstrate
that the presence of parameter mismatches is also esse
for the existence ofperfectretarded synchronization with th
coupling-delay lag time between certain classes ofunidirec-
tionally coupled time-delayed systems. To be more spec
for the example of external cavity laser diodes we ha
shown that for unidirectionally coupled time-delayed sy
temsperfect retarded synchronization occurs both with a
without parameter mismatches; parameter mismatches
change the lag time between the synchronized systems.
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